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Abstract

Convolutional neural network (CNN), one of the most commonly used deep learn-

ing methods, has been applied to various computer vision and pattern recognition

tasks, and has achieved state-of-the-art performance. Most recent research work on

CNN focuses on the innovations of the structure. This thesis explores both the in-

novation of structure and final label encoding of CNN. To evaluate the performance

of our proposed network structure and label encoding method, two computer vision

tasks are conducted, namely age estimation from facial image and depth estimation

from a single image.

For age estimation from facial image, we propose a novel hierarchical aggrega-

tion based deep network to learn aging features from facial images and apply our

encoding method to transfer the discrete aging labels into a possibility label, which

enables the CNN to conduct a classification task rather than regression task. In

contrast to traditional aging features, where identical filter is applied to the en-

tire facial image, our deep aging feature can capture both local and global cues in

aging. Under our formulation, convolutional neural network (CNN) is employed

to extract region specific features at lower layers. Then, low layer features are

hierarchically aggregated by using fully connected way to consecutive higher layer-

s. The resultant aging feature is of dimensionality 110, which achieves both good

discriminative ability and efficiency. Experimental results of age prediction on the

MORPH-II and the FG-NET databases show that the proposed deep aging feature

outperforms state-of-the-art aging features by a margin.

Depth estimation from a single image is an essential component toward un-

derstanding the 3D geometry of a scene. Compared with depth estimation from

stereo images, depth map estimation from a single image is an extremely challeng-

ing task. This thesis addresses this task by regression with deep features, combined

with surface normal constrained depth refinement. The proposed framework con-

sists of two steps. First, we implement a convolutional neural network (CNN) to

learn the mapping from multi-scale image patches to depth on the super-pixel level.

In this step, we apply the proposed label encoding method to transfer the contin-
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uous depth labels to be possibility vectors, which reformulates the regression task

to a classification task. Second, we refine predicted depth at the super-pixel level

to the pixel level by exploiting surface normal constraints on depth map. Exper-

imental results of depth estimation on the NYU2 dataset show that the proposed

method achieves a promising performance and has a better performance compared

with methods without the proposed label encoding.

The above tasks show the proposed label encoding method has promising per-

formance, which is another direction of CNN structure optimization.
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Chapter 1

Introduction

Convolutional neural network (CNN) has achieved promising performance on lots

of computer vision and pattern recognition tasks due to its strong ability of self-

learning and dealing with large scale data. Although most recent research work

focuses mainly on the innovation of CNN structure [2–6], the research on label

encoding is a development direction of CNN, because a reasonable implementation

of label encoding method could help to optimize the CNN structure. Therefore,

this thesis mainly explores the implementations of CNN with well-performed label

encoding method. In order to evaluate the performance of CNN and label encoding

method, two computer vision tasks, age estimation from facial image and depth

estimation from a single image, are conducted.

In this chapter, we firstly introduce CNN and label encoding method. After

that, we separately give descriptions of age estimation from facial image task and

depth estimation from a single image task, which are the tasks conducted for e-

valuating our proposed CNN structures and label encoding method. Finally, the

main contributions and outline of this thesis are introduced.

1.1 Convolutional Neural Network

Recently, CNN, one of the most commonly used deep learning methods, becomes

popular because of its outstanding performance on object recognition [2], face infor-

mation extraction [4], image retrieval [3] and lots of other tasks in computer vision

areas. CNN is an end-to-end learning architecture to leverage collected informa-

tion [7]. It trains the description features directly from raw data, which means

decreasing the human effort of designing features. Meanwhile, CNN is able to

deal with large scale data because of its sufficient capacity and reasonable model

structure. Therefore, CNN solves two of the most important problems of tradi-
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1.2 Encoding of target output labels 2

tional algorithms in computer vision, the large efforts of feature designing [8] and

the weak ability to deal with big data [9]. These advantages of CNN ensure its

excellent performances.

1.2 Encoding of target output labels

Traditionally, CNN changes the type of its last layer to conduct tasks with different

types, for example, uses softmax layer to conduct classification tasks and uses

Euclidean layer to conduct regression tasks. In this thesis, we utilize the fact that

softmax layer outputs a possibility vector for classification task to explore methods

that can transfer a regression task to classification task.

Usually, the labels in classification tasks are discrete and independent to each

other. Therefore, when the output is a possibility vector, we choose the label

with the highest value in the vector as its classification results. However, for the

classification tasks transferred from regression tasks, this winner-take-all strategy

is not reasonable, since the adjacent labels are interdependent. For example, a

40-year old face could also be partly similar with face with 35 years old and face

with 45 years old. Therefore, a label encoding method is proposed in this thesis,

which enables an encoded label to contain the information of its adjacent labels.

This method ensures dependent relationship between two labels.

1.3 Age estimation from facial image

A recent study [10] has shown that human faces are fundamental to human social

interaction, which means that faces are essential for daily communications. For

example, faces are important in identifying emotional tendencies, health qualities

and origins. Human faces contain lots of visually nonverbal information, such as

age, gender, ethnicity and emotion. An instance is Age Estimation Systems (AES),

which have a wide range of applications. In security area, an AES can help prevent

teenagers browsing adult web pages or purchasing age restricted material from the

internet. Age information can also be used in law enforcement. It can be used to

quickly locate the suspects in a specific age group in the videos to be processed.

This can improve the efficiency in suspect matching.

Therefore, automatic age estimation is an important task in computer vision

area. And the key of this task is the high quality aging features extracted from

facial images. Fig. 1.1 shows the age estimation task and an example of our aging

feature.
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Figure 1.1: Four sample facial images and their corresponding deep aging features
as extracted by our method. Despite of the remarkable intra-class diversity and
inter-class similarities in facial appearance of these images, our method can extract
broadly similar aging features for similar ages, regardless of race and gender. In the
bottom figure, we illustrate the 110-dimension deep aging features for each facial
image.

In this thesis, we introduce a new, hierarchical, aggregation-based deep network

to learn aging features from facial images. To capture the aging cues in local

regions, our framework trains independently for local facial regions in lower layers

of the network. Facial features from lower layers are hierarchically aggregated in a

fully connected way to reach higher layer representations. In this way, we extract

not only local but also global cues for age prediction. The resultant aging feature

vector is of significantly lower dimension – 110 dimensions compared with hand-

crafted aging feature vectors with thousands of dimensions, such as BIF and LBP.

It also has more discriminative power.

1.4 Depth map prediction from a single image

Recovering 3D depth from images is a basic problem in computer vision, which

helps provide richer representations of objects and the surrounding environment,

then enables lots of further applications in robotics [11], 3D modeling [12] and

physics and support model [13]. Fig. 1.2 shows an illustration of depth estimation.

Most previous works on depth estimation focus on binocular vision [14] that

require multiple images, such as structure from stereo images or motion [15] and
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Figure 1.2: An illustration of depth estimation. Depth estimation is to esti-
mate the distance between image pixels and camera focal point. Source from
www.jayeshkawli.com.

depth from defocus [16]. Compared with the above algorithms, single image depth

estimation becomes popular until recently, since this is a difficult task, which re-

quires the usage of monocular depth cues, such as line angles, and the global

structure of the image.

To explore a new efficient and well-performed method to conduct this task, this

thesis presents a new framework consisting of depth regression via deep features

and depth refining via surface normal constraints. Firstly, we use a deep network

and formulate the problem of depth estimation as a classification problem, rather

than a regression one as in [6], to exploit the relation between a color image and its

corresponding depth. A multi-scale deep feature is extracted by a deep network.

Secondly, to further refine the depth maps and achieve effective estimation, we

introduce a surface normal constraint model to take various potentials into consid-

eration to estimate depth for each pixel, thus upgrading the depth estimation from

super-pixel level to pixel level.

1.5 Main Contributions

The main contributions of this thesis are summarized as below:

1. We propose a new CNN structure to extract aging features from facial image,

which is able to extract both the local and global aging cues. Moreover, we propose

a new label encoding method to transfer the discrete aging labels into a continuous

possibility vector, which improves the performance of our CNN structure. Our

proposed framework achieves state-of-the-art performance on age estimation task.

2. We propose a new framework to conduct depth estimation from a single

image task. In this framework, we successfully transfer the regression task into

a classification task by applying label encoding method, which improves the per-

formance of our CNN structure by a large margin. Moreover, we implement the
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surface normal constraints on depth refinement stage, which increases the accuracy

of depth estimation. Our proposed framework achieves promising performance on

depth estimation from a single image task.

3. Our proposed label encoding method shows a strong capability to improve

the performance of CNN without significantly change of the structure. This could

be an interesting research direction of CNN.

1.6 Outline

In this thesis, Chapter 1 gives an overall introduction on motivations, scopes and

contributions. Chapter2 provides some background knowledge on convolutional

neural network (CNN), and latest research progress in this area is also included.

Chapter3 introduces the related research work on age estimation from facial image

task and demonstrates our CNN-based architecture on this task, which achieves

the-state-of-art performance. Chapter4 introduces the related research work on

depth estimation from a single image task and demonstrates our CNN-based meth-

ods on this task, which achieves a promising performance. Chapter5 concludes this

thesis and provides a discussion on future work related to the research work in this

thesis.



Chapter 2

Background on Convolutional

Neural Network

2.1 Introduction

A Convolutional Neural Network (CNN) is a type of feed-forward artificial neural

network where the individual neurons are tiled in such a way that they respond

to overlapping regions in the visual field. CNN is a biologically-inspired variant.

From the early work of Hubel and Wiesel [17] on the cats visual cortex in 1968, it

is known that the visual cortex contains a complex arrangement of neurons. These

neurons are sensitive to small sub-regions of the visual field, called a receptive

field. The sub-regions are tiled to cover the entire visual field. These neurons work

as local filters over the input space and are well-suited to exploit spatially local

correlation presented in natural images.

Fukushima’s work [18] first computes models based on these local connectivi-

ties between neurons and on hierarchically organized transformations of the image.

In this work, he found that when neurons with the same parameters are applied

on patches of the previous layer at different locations, a form of translational in-

variance is achieved. According to this idea, LeCun designed and trained CNNs

using the error gradient with back-propagation algorithm, obtaining state-of-the-

art performance on lots of pattern recognition tasks [19, 20]. One of the main

contributions of CNN on neural network area is the implementation of weights

sharing, appling same weights on same feature map, which increases the learning

efficiency by significantly reducing the number of trainable parameters.

Then, in recent years, active functions and dropout algorithm [1] were imple-

mented on CNN, which increases the non-linearity and independence of feature

maps, then leads to higher-understanding and more stable learnt features. In ad-
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Figure 2.1: A simple CNN flow diagram. Source from www.deeplearning.net

diction to performing as an end-to-end structure, some research [21] show that the

deep-learning features within the structure could also be used as features to feed

into classifiers to conduct computer vision tasks, which is same with traditional

hand-craft features.

Compared with traditional pattern recognition and computer vision algorithm-

s, convolutional neural networks require less pre-processing. In other word, the

network is responsible for learning filters that is hand-engineered in traditional al-

gorithms. Compared with existing difficulty to design hand-engineered features,

the independence on prior-knowledge is a major advantage of CNN.

2.2 Structure of CNN

There are two fundamental layer types in a CNN: convolutional layers and pooling

layers. And with the development of CNN, active functions, dropout are added in

order to increase the performance of CNN. And in the last layer of CNN, different

loss layers are chose according to the type of tasks. I will briefly explain all elements

we implemented in this thesis. Fig. 2.1 shows a sample of CNN overall structure.

2.2.1 Convolutional Layer

Convolutional layer is a core building block of CNN, which differs CNN with tra-

ditional artificial neural networks. To avoid the situation of learning billions of

parameters (if all layers are fully connected), the idea of using convolutional opera-

tions on small regions has been introduced. One major advantage of convolutional

networks is the weights sharing in convolutional layers, which means implementing

same filters on same feature map. Weights sharing helps to reduce the required com-

puting memory and to improve CNN performance on computer vision tasks [22].

Fig . 2.2 shows the weights sharing’s effect on parameter reduction. Then, by re-

ducing the number of trainable parameters, the over-fitting problem of traditional

neural network was alleviated [23].
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Figure 2.2: Comparison between convolutional layers with weights sharing and fully
connected. It can be seen that with same hidden unit (neurons at the adjacent next
layer), the number of trainable parameters with implementation of weights sharing
is just 0.01% of the number of trainable parameters without weights sharing.Source
from www.deeplearning.net.

The parameters of convolutional layer consist of a set of learnable filters, which

is small spatially. During the forward pass, each filter is convolved across the

width and height of the input volume, producing a 2-dimensional activation map

of that filter. The network learns filters that will be activated by specific types of

features from the input at certain positions, which is same with the convolutional

operation in the traditional feature designed algorithms - extracting basic features

from inputs. Then, stacking these activation maps for all filters along the depth

dimension forms the full output volume. With the help of weights sharing, the

number of learnt filters in convolutional increased, which enables the extraction of

more information from input data.

In a convolutional layer, a feature map is obtained by repeated application of

a function across sub-regions of the entire image, in other words, by convolution

of the input image with a filter, adding a bias term. If we denote the k-th input

feature map of a given convolutional layer as hk, whose filter is set as W k and bias

is bk, then the output feature map of this convolutional layer hk+1 is obtained as:

hk+1 = W k ⊗ hk + bk, (2.1)

where the ⊗ denotes the convolutional operation.

For fully connected layer, it is a special case of convolutional layer. A fully

connected layer is a convolutional layer that takes all neurons in the previous layer
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and connects them to every single neuron it has, which means a convolutional layer

without weights sharing and each filter of this layer is with size 1 × 1. The main

function of fully connected layer is to reduce the spatially located of neurons and

form high-understanding features.

2.2.2 Pooling Layer

Pooling layer is commonly inserted between convolutional layers periodically in a

CNN architecture. The function of pooling layer is to reduce the resolution of

feature maps, thus achieving spatial invariance as well as alleviating the overfitting

problem [24]. In a pooling layer, each pooled feature map corresponds to a feature

map of the previous layer. A small n × n patch, as shown in Fig. 2.1, is used

to combine units of the feature map, thus creating position invariance over larger

local areas. Meanwhile, it down-samples the input by a factor of n× n along each

direction [25]. Algorithm. 1 shows the general pooling operation in CNN.

Require: Parameters of spatial extent (filter size) F and stride S
1). Accepts an input batch with size X × Y × Z
2). Produce an output feature map with size X̂ × Ŷ × Ẑ, where
X̂ = X−F+S

S

Ŷ = Y−F+S
S

Ẑ = Z
Algorithm 1: The pooling operation.

There are two main pooling layers used in CNN, the sub-sampling pooling and

max pooling.

Sub-sampling Pooling

For the sub-sampling pooling, the function shows below:

aj = β
∑
N×N

an×ni + b, (2.2)

where aj denotes the output of pooling layer and ai denotes the input of pooling

layer. The sub-sampling pooling operation takes the sum of the inputs, multiply it

with a trainable scalar β, then adds a trainable bias b. It can be seen that, average

pooling that commonly used in CNN is a special situation of sub-sampling pooling,

which set β = 1
N×N and b = 0.
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Figure 2.3: Max Pooling with a filter of size 2 × 2 and a stride of 2. Illustration
of how a 4 × 4 patch is down-sampled to a 2 × 2 patch by putting through max
pooling layer. The maximum value is taken over four values of a 2× 2 patch (since
the filter size is 2× 2). The filter then shifts by 2 pixels (the stride size) each time
and takes the maximum value over the next 2 × 2 patch. In this way, the filter
shifts and takes maximum value along the way from the top left to the bottom
right over the input pitch, discarding 75% of the activations, while the dimension
of width remained unchanged. The left pitch then is down sampled to the right
pitch.

Max Pooling

For the max pooling, the function shows below:

aj = max(an×ni u(n, n)), (2.3)

which applied a window function u(x, y) on the input data and extract the max-

imum in the neighbourhood. Figure. 2.3 shows an example of the max pooling

operation.

Although average pooling was commonly used in traditional CNN, max pooling

has shown a better performance in experiments and is widely used in recent CNN

architecture designs. Scherer et al. [24] conducted an experiment to compare the

performance of max pooling and sub-sampling on object recognition task. The

result shows that max pooling is superior to sub-sampling for invariance capture

in image-like data. Moreover, max pooling enables faster convergence rate by

choosing superior invariant features which improves performance in generalization

and reduces the number of trainable parameters, thus minimizing calculations and

computing time, resulting in a better efficiency during training [26].
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Figure 2.4: sigm(x) function plotting (−10 < x < 10).

2.2.3 Active Function

In CNN, one of the most significant factors is the implementation of active func-

tion. Active functions increase the non-linearity in networks, which leads to high-

understanding of the input batch. In addition to non-linearity, active function also

gives out a feature map without extreme data values, which increases the inde-

pendency of neurons in next layer, then results increase the stability of the whole

network.

Three most commonly used active functions in CNN are introduced here. One

important common acknowledgement is that all active functions should be differ-

entiable, which ensures the usage of back-propagation algorithm in the training

process.

Sigmoid Function

The sigmoid function is defined as:

sigm(x) =
1

1 + e−x
, (2.4)

and the figure of sigmoid functions shows in Fig. 2.4.

As can be seen from Fig. 2.4, sigmoid function takes a real-valued number and

squashes it into range between 0 and 1. In particular, large negative numbers tend

to be 0 and large positive numbers tend to be 1. The sigmoid function has been

frequently used since it has a nice interpretation as the firing rate of a neuron: from

not firing at all, i.e. 0, to fully-saturated firing at an assumed maximum frequency,

i.e. 1.
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Although sigmoid function has been widely used, recent research [27] shows that

the non-linearity of sigmoid function performs not good in some practice situations,

since it has two major disadvantages.

First, Sigmoid function is easily saturated and kills gradients in the training

process. A very unsatisfactory property of the sigmoid neuron is that when the

neuron’s activation saturates at either tail of 0 or 1, the gradients at these regions

are almost zero. During back-propagation, the gradient will be multiplied to the

gradient of this gate’s output for the whole objective. Therefore, if the local gra-

dient is very small, it will effectively kills the gradient and almost has no signal

flow through the neuron to its weights and then to its data, recursively. Moreover,

one must pay extra attention when initializing the weights of sigmoid neurons to

prevent saturation. For example, if the initial weights are too large then most

neurons would be saturated and the network almost have no learning ability.

Secondly, the outputs of sigmoid function are not zero-centred. This is unde-

sirable since neurons in the next layer will receive non-zero-centred data. This has

impacts on the dynamics during gradient descent, because if the data coming into

a neuron is always positive (e.g. x > 0), then the gradient on the weights during

back-propagation will become either all positive, or all negative (depending on the

gradient of the whole expression). This could introduce undesirable zig-zagging dy-

namics in the weights updating process. However, once these gradients are added

up across a batch of data, the final updating for the weights could have variable

signs, which minimizes the caused error [27]. Therefore, this is an inconvenience

but it is less significant compared to the saturated activation problem.

tanh function

The tanh function is defined as:

tanh(x) =
1− e−2x

1 + e−2x
, (2.5)

and the figure of tanh functions shows in Fig. 2.5.

As can be concluded from Fig. 2.5, similar with sigmoid function, tanh func-

tion squashes a real-valued number to a range of [−1, 1] in an non-linearity way.

Although its outputs is zero-centered, which avoid the zig-zagging dynamics in the

weights updating process, it still has saturated activation problem. Therefore, al-

though the tanh function has improvement over sigmoid function, it still performs

not well in practice.
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Figure 2.5: tanh(x) function plotting (−10 < x < 10).

Figure 2.6: Rectified Linear Unit (ReLU) plotting (−10 < x < 10).

Rectified Linear Unit (ReLU)

ReLU is the most widely used active function in CNN now. Its function is defined

as:

f(x) = max(0, x), (2.6)

and the figure of ReLU shows in Fig. 2.6.

There are two main advantages of ReLU function. First, compared with sigmoid

function and tanh function that involve complicated operations, i.e. exponentials,

ReLU can be implemented by simply set a threshold at zero. Therefore, CNN

with ReLU trains several times faster than their equivalents with tanh function

and sigmoid function [2]. Second, ReLU does not suffer from saturating which



2.2 Structure of CNN 14

enhances the CNN’s advantage that does not need lots of pre-processing.

However, there is also a drawback for ReLU function, i.e. ReLU units can die

during training. For example, ReLU can irreversibly die and do not activate any

data point during training since it will get knocked off the data manifold if the

learning rate is set too high. But this is less frequently an issue with a proper

setting of the learning rate.

To address this drawback, recently, a large class of ReLU functions (e.g. Leaky

ReLU, Parametric ReLU, etc.), aims to fix the dying problem, called the Rectified

Linear Unit Family [28]. Instead of the function being zero when x < 0, a leaky

ReLU will instead have a small negative slope (i.e. 0.01), hence the expression

could be updated as:

f(x) =

x x ≥ 0

αx x < 0,
(2.7)

the key point of using this leaky ReLU is to find suitable α.

2.2.4 Dropout

A CNN architecture contains multiple non-linear hidden layers,which makes CNN

as expressive model that is able to learn the complicated relationships between the

inputs and outputs. However, under the situation where there is limited training

data, many of these complicated relationships will be the result of sampling noise,

which only exists in the training set but not in test data, even if the testing data

is drawn from the same distribution [29]. Then, overfitting would occur during

training process. Many methods have been developed to reduce such issue, such

as stopping the training as soon as performance on a validation set starts to get

worse, introducing various kinds of weights penalties and soft weight sharing [30].

Dropout [1] is a powerful algorithm introduced to solve the overfitting problem,

which reduces the generalization error of large neural networks. It reduces complex

co-adaptations of neurons, since in dropout algorithm a single neuron cannot rely

on the presence of other neurons. Dropout, therefore, enhances CNN to be able

to learn more robust features and stable structure [31]. The term dropout refers

to dropping out units (hidden and visible) in a neural network. By dropping a

unit out, we mean temporarily removing it from the network, along with its all

connections [1].

As can be seen from Fig. 2.7, compared with standard neural network, the

network with dropout method largely reduces the number of trainable parameters,
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Figure 2.7: A sample of dropout. Left: A standard neural net with 2 hidden layers.
Right: An example of a thinned net produced by applying dropout to the network
on the left. Crossed units have been dropped. Source from [1].

thus reduces the number of calculations and increase the computational efficiency.

In practical situation, the CNN is much larger and deeper than this sample model,

then the effect of dropout method is more obvious.

Dropout can be interpreted as a method to regularize a CNN by adding noise to

its hidden units. The idea of adding noise to the states of units has previously been

used in the context of Denoising Auto-encoders (DAEs) [32], where noise is added

to the input units of an auto-encoder and the network is trained to reconstruct the

noise-free input. However, different from DAEs in training process, dropout can

be used in all layers except loss layer and occurs during supervised training with

end-to-end back-propagation. The choice of which units to drop is random. The

forward process of dropout with a convolutional layer is showed below:

hk+1 = M ∗ (W k ⊗ hk + bk), (2.8)

where M denotes the dropout mask and ∗ denotes the element-wise multiplication.

Set the dropout rate to be p, (0 < p < 1), then each elements of M has probability

p equals to zero and probability 1−p equals to one, therefore, M is a binary mask.

At testing time, it is not practical to take average of the predictions from models

with all dropout situations occurred in training process. A simple approximate

averaging method is implemented to solve this problem and works well. The idea

is to use the trained network without dropout at testing time. The weights of this

network are scaled-down versions of the trained weights. If a unit is trained with a

probability p in training process, the outgoing weights of that unit are multiplied
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Figure 2.8: Left: a unit in training process; Right, a unit in testing process. The
unit in training process is presented with probability p and is connected to units
in the next layer with trained weights w. In testing process, the unit is always
presented and the weights are multiplied by p. The output of testing process is
same with the expected output of training process. Source from [1].

by p at test time, as shown in Fig. 2.8. By doing this scaling, it is observed that for

any hidden unit the expected output (under the distribution used to drop units at

training time) is the same as the actual output at test time. [33] shows that training

a network with dropout and using this approximate averaging method at test time

leads to significantly lower generalization error on a wide variety of classification

problems compared to training with other regularization methods.

2.2.5 Loss Layer

Different loss functions are chosen for different tasks in CNN. In this subsection, we

mainly introduce two commonly used loss functions - Softmax loss and Euclidean

loss.

Euclidean loss

Euclidean loss is used for real-value regression tasks. Since it is for a single real-

value, the last layer of CNN with Euclidean loss is 1 × 1 size. The mathematical

function of Euclidean loss shows below:

L =
1

2N

N∑
i=1

‖d̂i − di‖22, (2.9)

where d̂i denotes the regressed outputs, di denotes the target outputs, N denotes

the number of outputs.

Softmax loss

Softmax loss is used for predicting a single class of K mutually exclusive classes

and outputs a possibility vector with size 1 × k, where all elements in the vector
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sums to be one. The mathematical function of Softmax loss shows below:

L = −
∑
j

yj log pj, (2.10)

where yj is the ground truth class, when the target belongs to j-th class, yj = 1,

otherwise, yj = 0. pj denotes the predicted possibility of input belongs to j-th

class. When output the predicted possibility vector, the mathematical function of

Softmax function shows below:

pj =
eoj∑
k e

ok
, (2.11)

where oj denotes the output at j-th position of the last layer of CNN. Although

Softmax loss is designed for classification tasks, it can also be implemented on

regression tasks, in this thesis, we applied softmax loss to two regression tasks, age

estimation and single image depth prediction.

2.3 Summary

This chapter introduced the background of CNN, which is a structure with well

self-learning ability. This ability increase with the non-linearity within the network,

which can be achieved by increasing the number of layers in the network. Therefore,

one research direction of CNN is increasing the number of network layers while

keeping the size of feature maps with reasonable scale. Moreover, a reasonable

shape of CNN structure is also important and a structure with pyramid shape

always gives out better results compared with structures with other shapes [34].

Therefore, optimizing the shape of CNN structure via encoding output labels is

also a possible research direction.

In the following two chapters, we detailed demonstrates two our proposed frame-

works on age estimation from facial image task and depth estimation from a single

image task, respectively. Both these two proposed frameworks based on CNN.



Chapter 3

Hierarchical Aggregation based

Deep Aging Feature for Age

Prediction

3.1 Introduction

Despite recent progress in the area of automatic age prediction from facial images,

this area remains a very challenging one for computer vision and pattern recognition

(see [35] for a recent overview). Important areas of concern include: 1) aging

processes are affected by external factors as well as human genetics; 2) males and

females may have very different aging characteristics; 3) people of different races

have different aging cues. Images of people of the same age may have different

facial appearances and images of people of different ages may have similar facial

features. Such intra-class diversity and inter-class similarities pose big challenges

for automatic age prediction as shown in Fig.1.1.

In past decades, there has been considerable research work on extracting ro-

bust and discriminative facial features. For age prediction, the most informative

features are usually located in the regions where wrinkles typically appear, such as

the eye and mouth corners, nasolabial folds, and cheeks [35]. Various appearance-

based features, such as local binary patterns (LBP) [36, 37] and encoding-based

sampling [38] have been proposed to capture information for facial skin wrinkles.

Besides appearance-based features, gradient-based features, such as Sobel [39], Ga-

bor [40] filters and Biological-Inspired Features (BIF) [41] have also been applied to

capture facial wrinkles. Based on the anthropometric model, recent work [42, 43]

has represented a sequence of individual aging face images into a sequence by

learning a subspace representation. Most recently, Han et al. have proposed a hi-

18
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erarchical age estimator that combines both intrinsic factors and extrinsic factors

to perform age estimation from facial images [35].

The use of hand-crafted features for age-estimation usually enforces one identi-

cal filter over the entire facial image [37] or specific filters on specific facial region-

s [44], which may be heavily affected by region mis-localization. Furthermore, in

comparison with learnt features, hand-crafted features are generally not as discrimi-

native in many computer vision tasks such as classification [3], depth estimation [45]

and semantic labelling [46]. By contrast, features learnt using Convolutional Neural

Networks (CNN) have been shown to significantly improve the image classification

accuracy on the ImageNet database [2, 3].

Recently, lots of CNN-based frameworks achieve the state-of-art results on age

estimation. Wang et al. [47] extract deep learned aging features directly from the

entire face images. Moreover, Yi et al. [4] proposed an end-to-end CNN-based

structure to directly estimate age from face images. However, in [47], although

CNN has strong ability to learn translation invariant features, this results may be

affected by the large mis-location of the human face on the image. And in [4], the

classification ability of the last layer of CNN is relatively weak than linear classifiers,

such as SVM and Random Forest. Then this will decrease the performance the

structure.

In this chapter, we introduce a new, hierarchical, aggregation-based deep net-

work to learn aging features from facial images. To capture the aging cues in local

regions, our framework trains independently for local facial regions in lower layers

of the network. Facial features from lower layers are hierarchically aggregated in a

fully connected way to reach higher layer representations. In this way, we extract

not only local but also global cues for age prediction. The resultant aging feature

vector is of significantly lower dimension – 110 dimensions compared with many

thousands of dimensions of hand-crafted aging feature vectors. It also has more

discriminative power. As illustrated in Fig. 1.1, our method yields very similar

aging features for people from different races with identical ages despite of the

differences in the facial appearances of the images shown.

3.2 Method

Our target is to design an aging feature extractor that can extract discrimina-

tive features for age prediction. As different facial regions provide different aging

cues [41], our method learns features for each facial region individually at the

lowest level. Because aging cues for age prediction can also include high-level fea-
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tures, simply concatenating all the low-level, region-specific features together may

not be sufficient to capture all the needed cues at a global level. Therefore, our

method applies a hierarchical, aggregation-based network structure, where three

levels (region-specific local level, row-based middle level and global level) of hi-

erarchical nonlinear aggregation (using fully connected layers) are enforced. The

structure of the whole feature extraction network is illustrated in Fig. 3.1. The

specific parameters shown in this figure have been found to provide the best trade

off between training speed and accuracy. Once we have learned the aging features,

we use linear Support Vector Regressor (SVR) to conduct age prediction.
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Figure 3.1: Our hierarchical aggregation based deep aging feature extraction network.
In our implementation, facial images are first resized to 128 × 96 and then are divided
into 4×4 regions with the sub-image size 34×34. There are 1 pixel and 5 pixels’ overlap
between adjacent regions in the same column and row respectively. Each region is fed
into a region-specific network. Region specific features from lower level are hierarchically
aggregated in higher levels by using a fully connected layer. In the last layer (softmax
layer), we propose to use a new label method to transform the discrete age labels to a
11-dimension probability label.

3.2.1 Region-specific Local Level

At the lowest level, our method learns local-level features for each region of overlap-

ping 4×4 divisions of the facial images. Traditionally, most CNNs share weights of

all neurons on the same map. However, this sharing does not work well on images
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with fixed spatial layout, such as human faces [48]. For example, the eyes and the

nose may share the same low-level features, but their contributions to understand-

ing high-level features could be quite different. Therefore, we first divide the facial

image into 4 × 4 divisions and then learn region-specific layers for each division.

There are 1 and 5 pixels overlap on column and row between adjacent local regions,

which makes sure the local region input contains the meaningful information, such

as nose and eyes. The overlaps are set with experiments results on the validation

set, which will explain at Section.3.3.

Our region-specific level contains 5 layers: three convolution (+ pooling) layers

and two fully connected layers. The pooling layers in the network alleviate the

effects of registration error and make the aging feature translation invariant. In

order to reduce over-fitting in local feature extraction, a 0.5 dropout rate has been

enforced on the two fully connected layers. Rectified linear units (max(out, 0),

Relu) are used as active functions. The combination of Relu and dropout can

significantly improve the efficiency of CNN. This modification over the traditional

convolutional networks was presented in [1]. Our experiments, described below,

show its effectiveness in our task.

3.2.2 Row-based Middle Level and Global Level

As age prediction is a high level task, simply concatenating all the low level region

specific features may not lead to success in capturing aging cues. Therefore, we

propose two hierarchical aggregation levels (middle level and global level) to ag-

gregate the low level region specific aging features in nonlinear way and fine tune

our net on the entire facial image.

In the first aggregation level, region-specific features from 4× 4 division of the

original facial image are aggregated row-wise to a feature representation for each

row in the row-specific fully-layer. As human faces are highly symmetric, there

should be lots of information redundancy between two regions that correspond

symmetrically with each other on the same row. The row-based level aims at

aggregating row-wise feature from low level feature extraction while reducing the

redundancy in them. It takes 4 region specific features from the same row as inputs

and outputs a 110 dimensional row-specific feature vector.

In the second aggregation level, the row-wise 4 × 1 aging features are further

aggregated into a final single feature vector in the global level. The global layer

aims at extracting high level aging cues from the entire image and its output is

our deep aging feature vector for age prediction. The softmax layer outputs a

11-dimension probability vector corresponding to the age label vector.
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In our implementation, aggregation is realized by using a fully connected layer

with Relu as active function. In this way, our deep aging feature extracts both

local region-specific cues and high level or even global cues in human aging.

3.2.3 Age Labelling and Loss Function

Our method uses a probability distribution representation to encode age, thus

transforming the age from a discrete value to a continuous probability vector. The

transformed age is fit into the last softmax layer of our network. In our experiments,

we partition the age axis into 11 age segments. Each age segment cover an age

range of δ = 8 years according to experiments. The resultant age axis partition is

V = [3.5, 11.5, 19.5, 27.5, 35.5, 43.5, 51.5, 59.5, 67.5, 75.5, 83.5]. The elements in

V are the breakpoints θs. Thus an age y is encoded as:

f = [0 . . .
δ − |y − θi|

δ
,
δ − |y − θi+1|

δ
. . . 0], (3.1)

where θi and θi+1 are the two nearest breakpoints to y, θi ≤ y ≤ θi+1. Therefore,

a new age label f only contains 2 non-zero elements on the positions i and i + 1

while all the other positions are 0. The 2 non-zero elements actually encodes the

similarity between the labeled age and its two closest breakpoint values. Given a

transformed age label fi, the corresponding age value is yi = V fT
i . Based on this

age labelling, the loss function of our network is defined as:

L =
N∑
i=1

‖fi − f̂i‖, (3.2)

where N is the number of training samples, fi and f̂i correspond to the ground

truth age and predicted age respectively. Stochastic gradient descent is used with

gradients calculated by back-propagation. Note that, since the aging features are

extracted from the output of the fully connected layer in the global level, there is

no constraint on the output of the softmax layer that makes it contains only two

non-zero elements.

By using the above age labelling strategy and loss function, we formulate the

age prediction problem as a regression problem. Meanwhile, the proposed age

labelling method reduces the number of age labels from a high dimensions (62 in

the MORPH-II database) to 11-dimensions, thus effectively reducing the number of

parameters and the dimensions of aging features in the net architecture. Since the

performance of deep network usually achieves the best when its layer dimensions

perform pyramid, that is the dimensions decrease steadily from lower layers to high
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layers, with a similar ratio [49].

3.3 Experiments

In this section, we report experimental results on various configurations to evaluate

the features learnt by our method for age prediction. The performance of age

prediction is evaluated by the mean absolute error (MAE)
∑N

k=1 |ŷk−yk|/N , where

yk is the ground truth age for the k-th test sample, ŷk is the predicted age, and N

is the number of testing samples.

The aging features are tested with two learning methods - Support Vector Ma-

chine (SVM) [50] and Random Forest (RF) [51]. In addition to being widely used

as the state-of-art methods, they are of different types. SVM uses a maximum

margin approach while Random Forest is an ensemble-based learner. This is to

illustrate the effectiveness of our features regardless of the leaner used.

3.3.1 Database

In our experiments, we used the MORPH-II [52] database ,the FG-NET database

and the FACES database [53]. The MORPH-II database consists of 55,132 facial

images with age, gender and race label. In our experiment setting, 5670 and 1880

face images were randomly chosen as testing set S1 and validation set S2 respec-

tively, while the remaining 47K images were used as training set S3. S1, S2 and S3

share similar distributions of age, gender and ethnic with the entire database, the

age distributions of the three sets are shown in Fig.3.2 in the form of accumulated

probability distribution. The FG-NET, is used in the cross-database evaluation ex-

periment, for it only contains 1002 face images, which is not enough for the training

of CNN. Moreover, the FACES facial image dataset was used in the generalization

evaluation experiment only, in order to test the HADF’s ability to deal with facial

images with expressions. And it only contains 1046 face images, thus is not enough

to train a deep network.

In our experiments, all the faces in MORPH-II [52] database and the FG-NET

database were cropped and resized to 128×96. To make fair comparison and get rid

of the influence of illumination, all the facial image were transformed to grey scale.

In the experiments, we observed that our Hierarchical Aggregation based Deep

Feature (HADF) shows robustness to small rotations, translations, and scaling in

facial image alignment.
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Figure 3.2: The age distribution of training, testing and validation sets. To bet-
ter illustrate the similarity in age distributions, we used the form of accumulated
probability distribution.

3.3.2 Quantitative Comparison

We compared our deep feature HADF with the state-of-the-art features for age

prediction. Specifically, we extracted the LBP feature and the BIF feature from

S3 and S1 and applied the best parameters tested on S2. The LBP feature aims

at capturing primarily the skin aging changes and the BIF feature is designed to

capture the deep and apparent wrinkles on the face. The dimension of the BIF

feature was reduced using PCA from 11080- dimensions to 1000-dimensions to

reduce the noise. Recent work has shown that pre-trained CNN features trained

on the ImageNet [2] can also be transferred to new classification or recognition

problems and boost remarkable performance. Here we used the CNN features

learnt from ImageNet as aging features for age prediction. Zhu et al. [54] trained a

CNN for face identification, although it is not for age estimation, their architecture

is able to capture high understanding of facial images. Here we used the face

identity-preserving features (FIP) [54] for age estimation.

Experimental results are illustrated in Table 4.5. Additionally, we illustrated

the accumulated accuracy with respect to absolute age error for each feature in

Fig. 3.3. From the table, our HADF feature achieves the lowest age prediction
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errors, which proves the effectiveness of our proposed features.

Table 3.1: Performance of aging features for age prediction with different classifier-
s.(In the table, C means classification and R means regression. Same representation
will be used in the following parts in this section. )

Method SVM-C SVM-R RF-C RF-R
LBP [37] 5.21 5.13 5.40 5.24
BIF [41] 4.23 4.17 4.26 4.21

ImageNet [2] 7.35 7.14 7.36 7.16
FIP 5.09 4.92 5.31 5.14

HADF 3.51 3.41 3.52 3.43

3.3.3 Influence of Division Size

In the above sections, we fixed the division size as 4 × 4. Here we evaluate the

performance of our features with respect to different divisions of sub-images (from

1× 1, ie. the whole image to 5× 5). Experimental results are reported in Fig. 3.4

and Table 3.2. The figure shows that the performance of age prediction peaks at

the division 4×4. This can be explained as 4×4 division captures the most suitable

detailed aging information in the facial images, while 3× 3 is too rough and 5× 5

is over-detailed. Additionally, as shown in Table 3.3, the combination of HADF

with different division size results in a better result. In this table, the optimum

result was achieved by a concatenation of 3 HADF features together with division

sizes of 3×3, 4×4 and 5×5 (with overlaps between adjacent local parts) and then

use principal component analysis to reduce the dimensionality to be 110. In this

experiment, all aging features are feed into an SVM-R and then predict the age.

Table 3.2: Comparison between different division size

Division 1× 1 2× 2 3× 3 4× 4 5× 5

MAE 4.52 3.90 3.64 3.41 3.89

Table 3.3: Combination of different division size

Division 3× 3 4× 4 5× 5 3× 3 + 4× 4 + 5× 5

MAE 3.64 3.41 3.89 3.27
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Figure 3.3: Changes of accuracy with respect to absolute age error. The accumulat-
ed accuracy is calculated with the change of absolute error of estimated ages. For
example, when x-axis is 4, the accuracy on y-axis means if the absolutely estimated
error within 4, the estimation is accepted as correct.
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Figure 3.4: Age prediction (MAE) with respect to division size.



3.3 Experiments 27

3.3.4 Cross-expressions evaluation

In this section, we test the generalization ability of our features on facial images

with expressions by carrying out an experiment. This experiment used the FACES

database to conduct the evaluation, it investigates if our feature extraction archi-

tecture can perform well when applied to extract features on facial images with

expressions. Note that, the same architecture learnt from MORPH-II training set

is used, the FACES samples are used only for testing and there is no retraining

in this process. Moreover, the age distribution of FACES is quite different from

MORPH-II, therefore, we only evaluated samples with ages≤77 (936 samples). Ta-

ble 3.4 demonstrates the results, which shows that our HADF feature achieves the

best generalization for the cross expressions age prediction task. Then, Table 3.5

shows the results after we get rid of the neutral expression in FACES dataset (434

samples), in order to test the performance of our HADF on unknown expressions.

In this experiment, all aging features are feed into an SVR and then predict the

age.

Table 3.4: Generalization ability: Cross-expression experiment.(Including neutral
expression)

Method LBP [37] BIF [41] ImageNet [2] FIP HADF

MAE 9.87 8.64 9.02 8.89 7.75

Table 3.5: Generalization ability: Cross-expression experiment.(Without neutral
expression)

Method LBP [37] BIF [41] ImageNet [2] FIP HADF

MAE 10.70 9.81 11.34 10.91 8.69

3.3.5 Cross-ethnic and Cross-gender evaluation

In this section, we test the generalization ability of our features by carrying out

two experiments. In the first experiment, all the African people in the MORPH-

II database (about 42K face images) were used as a training set and other races

(about 13K face images) were used as the testing set. Experimental results are

reported in Table 3.6, where our HADF feature achieves the best performance.

In the second experiment, all the male people in the MORPH-II database (about

47K face images) were used as a training set and female people (about 8K face



3.3 Experiments 28

Table 3.6: Generalization ability: Cross-ethnic experiment on the MORPH-II
database.

Method(MAE) SVM-C SVM-R RF-C RF-R
LBP [37] 6.23 6.11 6.29 6.16
BIF [41] 5.77 5.60 5.85 5.72

ImageNet [2] 7.61 7.14 7.36 7.24
FIP 5.92 5.79 6.07 5.93

HADF 4.79 4.72 4.88 4.80

images) were used as the testing set. Experimental results are reported in Table 3.7,

where our HADF feature achieves the best performance. All the three experiments

further prove the generalization ability and robustness of our HADF deep feature.

Table 3.7: Generalization ability: Cross-gender experiment on the MORPH-II
database.

Method(MAE) SVM-C SVM-R RF-C RF-R
LBP [37] 7.13 7.05 7.20 7.11
BIF [41] 6.19 5.98 6.24 6.07

ImageNet [2] 7.56 7.38 7.69 7.42
FIP 6.25 6.11 6.31 6.19

HADF 4.51 4.43 4.68 4.53

These two experiments shows the strong stability of our HADF feature, which

comes from the combination of local details and global information of face images.

Different with LBP and BIF, our HADF extracts global information at the Global

Level. And compared with FIP and Imagenet, HADF extracts more detail infor-

mation at the Region-specific Local Level. Therefore, the combination of global

information and local details in HADF results in its stability in the cross-ethnic

and cross-gender experiments.

3.3.6 Efficiency

The experiments in the previous section show the effectiveness of the proposed

learnt features. In this section, we discuss the efficiency of the features in two

aspects: feature extraction and age estimation. While the other features have

relatively high dimensions (more than 1000), (1180,11080,4096,512 for LBP, BIF,

ImageNet and FIP respectively), the dimension of HADF is just 110-dimension.
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Moreover, the features are extracted in one pass in by our architecture which is

much faster than the other features (pixel sampling(LBP), or bank of Gaussian-

s with different orientations and scales(BIF)). Efficiency is extremely important

to implementations with limited computational ability, such as wearable devices

(Google Glass) where realtime processing is a must. To compare with other fea-

tures in low-dimension scale, PCA is used to reduce the dimension of LBP and BIF

into 110. Table. 3.8 shows the results using SVM-R (as it gives the best results

for all features). For LBP and BIF, the MAE increased by about 10% and 20%

when reducing the dimension to be 110 and 11 respectively. This further shows the

compactness advantage of the proposed features over the other features.

Table 3.8: Comparison between four types of features and HADF;Local Binary
Pattern(LBP) and Bio-Inspired Features(BIF).(The dimensions of LBP and BIF
were reduced to 110.)

Method(MAE) 110-D All-D
LBP [37] 5.73 5.13
BIF [41] 5.01 4.17

ImageNet [2] 7.62 7.14
FIP 5.53 4.92

HADF 3.41 3.41

3.3.7 Generalizability evaluation

We test the generalizability of our features by carrying an experiment by using

FGNET database to do the cross-database evaluation. This experiment investigates

if our feature extraction architecture can perform well when used to extract features

from different databases. Note that, the same architecture learnt from MORPH-

II train set is used, the FGNET samples are used only for testing and there is

no retraining in this process. Moreover, the age distribution of FGNET is quiet

different with MORPH-II, therefore, we only evaluate samples with ages≥16 (427

samples). The best performance was achieved with our features which further

suggests the robustness of the proposed features.

3.3.8 The effect of age label encoding

Table. 3.10 shows the effects of our proposed age labelling method. The framework

without the proposed age label encoding method use the original age label as the
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Table 3.9: Comparison of generalizability between four types of features,Local Bi-
nary Pattern(LBP), Bio-Inspired Features(BIF), ImageNet Features, Face Identity-
preserving Features (FIP) and the proposed feature HADF using different classi-
fiers.

Method(MAE) SVM-C SVM-R RF-C RF-R
LBP [37] 7.87 7.79 7.94 7.86
BIF [41] 7.76 7.67 7.89 7.70

ImageNet [2] 8.91 8.78 9.10 8.93
FIP 7.69 7.60 7.81 7.71

HADF 7.49 7.42 7.61 7.45

target output. Parameters with the best performance are used and the extracted

features are fed into different kinds of classifiers to produce an overall evaluation

of the proposed age label encoding method. It is obviously that our proposed age

label encoding method significantly improve the performance of the framework.

Table 3.10: Comparison of the results between age label encoding and age label
without encoding (the same deep structure was used).

Method(MAE) SVM-C SVM-R RF-C RF-R
Age Label Encoding 3.51 3.41 3.52 3.43

No Age Label Encoding 4.62 4.57 4.77 4.61

3.4 Summary

This chapter has presented a new, hierarchical, aggregation-based deep network to

extract aging features from facial images. We employ region specific convolutional

neural network (CNN) at lower layers. These low layer features are hierarchically

aggregated into consecutive higher layers. Our aging feature is of dimensionality

110 and achieves both good discriminative ability and efficiency. Experimental

results of age prediction on the MORPH-II and the FG-NET databases show that

our method outperforms other state-of-the-art systems for age estimation.



Chapter 4

Surface Normal Constrained

Single Image Depth Estimation

4.1 Introduction

Depth estimation is an important task in computer vision area and is the basic of

many applications, such as 3D reconstruction [55]. Traditionally, depth estimation

is solved by algorithms that require multiple images, such as structure from stereo

images and motion [56]. Compared with these algorithms, estimating depth of a

scene from a single image is a highly ambiguous problem due to the lack of depth

cues and inadequate geometry constraints, and thus this challenging task attracts

lots of attention.

Recently, several approaches that estimate depth from a single image are pro-

posed. Saxena et al. [57] predict depth from a set of image features using linear

regression and a Markov Random Field (MRF). However, this framework highly

relies on horizontal alignment of images, which limit its generability. While Ladick-

y et al. [58] improve the performance by combining using of semantic label and

monocular depth features, this system relies on handcrafted features. Then, Karsh

er al. [59] implement a SIFT Flow-based kNN transfer mechanism to estimate the

depth from single image, however, it performs expensive alignment procedures at

run time.

More recently, data-driven depth estimation on single image, which directly

learns to predict scene geometry from data, gains popularity. An instance is CNN-

based frameworks. Nowadays, lots of CNN-based frameworks on depth estimation

from single image achieve the state-of-art performance both on computational ef-

ficiency and accuracy. Eigen et al. [60] designed a end-to-end structure to directly

estimate the depth map of single image and achieved state-of-the-art performance.

31
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Moreover, Li et al. [6] proposed a two stages framework, which predicts depth map

on super-pixel level first and then refined it to pixel level by using a CRF model.

Although the accuracy of [60] is high, the computing complexity of this structure is

too large, which limits its implementation on real-time situation. While [6] solved

the problem of high computational complexity, its last layer at the first stage is Eu-

clidean loss layer for regression tasks and the deep features it used are classification

features, which may affect the final performance.

In this chapter, we present a new framework consisting of depth regression

via deep features and depth refining via surface normal constraints. Firstly, we

use a deep network and formulate the problem of depth estimation as a deep fea-

ture classification problem to exploit the relation between a color image and its

corresponding depth. A multi-scale deep feature is extracted by a deep network.

Secondly, to further refine the depth maps and achieve efficient estimation, we

present a surface normal constraint model to take various potentials into consider-

ation to estimate depth for each pixel, thus upgrading the depth estimation from

super-pixel level to pixel level by the usage of more strict mathematical constraint

given by surface normal.

4.2 Method

In this subsection, we introduce a pixel-level single image depth estimation method,

which consists two stages: depth regression and depth refining by using surface

normal constraints. Firstly, we formulate super-pixel level depth estimation as a

classification problem by depth encoding, which is similar with the work by Li et

al. [6]. Secondly, we refine the depth estimation from super-pixel level to pixel level

by using surface normal constraints. The relationship between depth and surface

normal within a small plane leads to an approximate constraint, which refines the

depth more accurately. The Fig. 4.1 shows the overall flowchart of our proposed

framework.

4.2.1 Depth prediction via deep network

As shown in Fig. 4.1, in the first stage, we initialize the lower layers of our deep

network with pre-trained CNN and keep the parameters of pre-trained layers un-

changed in the training process. Then, the last three fully connected layers are

used as a classifier to estimate depth. An important contribution of this chapter

is that we transfer the real value depth label to a possibility vector by applying
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Figure 4.1: Overall flowchart of our proposed framework.

proposed depth coding method, which enabling the transition of depth estimation

from a regression problem to a classification problem.

It can also be seen from Fig. 4.1 that our deep network use multi-scales images

which centered at the chose point as inputs. The proposed network utilizes the first

16 layers of pre-trained VggNet [5] as lower layers. These pre-trained layers keep

unchanged and independent from each other in the training process. At the 17th

layer, we obtain 3 4096 × 1 sized features from three scales inputs, respectively.

Then the last 3 fully connected layers conduct feature fusion and depth estimation

task.

Depth Coding

Our method uses a probability distribution representation to encode depth, thus

transforming depth value to a continuous probability vector. The transformed

depth is fit into the last softmax layer of our network. In our experiments, the

depth values are first transfered into log space and shift 0.5 to right direction of

axis, which ensuring all encoded depth labels are positive. Then, we partition the

depth axis into 69 segments, which is decided by experiments. Each depth segment

cover an depth range of δ = 0.04. The resultant depth axis partition is V = [0,

0.04, 0.08, .... , 1.40, 1.44, 1.48, ... , 2.68, 2.72, 2.76]. The elements in V are the

breakpoints θs. Thus an depth y is encoded as:



4.2 Method 34

f = [0 . . .
δ − |y − θi|

δ
,
δ − |y − θi+1|

δ
. . . 0], (4.1)

where θi and θi+1 are the two nearest breakpoints to y, i.e. θi ≤ y ≤ θi+1. Therefore,

a new depth label f only contains 2 non-zero elements on the positions i and i+ 1

while all the other positions are 0. The 2 non-zero elements actually encodes the

similarity between the labeled depth and its two closest breakpoint values. Given

a transformed depth label fi, the corresponding depth value is yi = V fT
i . Based

on this depth labelling, the loss function of our network is defined as:

L =
N∑
i=1

‖fi − f̂i‖, (4.2)

where N is the number of training samples, fi and f̂i correspond to the ground

truth depth and predicted depth respectively. Stochastic gradient descent is used

with gradients calculated by back-propagation.

The reason for implementation of depth encoding in our network is the usage

of pre-trained layers of VggNet, which is a network for classification task. Thus its

pre-trained layers perform better on conducting classification task compared with

regression task. Therefore, by transferring the regression task to classification task,

the last three fully connected layers of our network focus on estimating depth.

Effect of multi-scale feature

Our deep network use a multi-scale blocks to extract depth cues, we used three

sizes blocks, 121× 121, 271× 271 and 407× 407. Table. 4.1 shows that the accu-

racy of depth estimation improved with the increase of block size, because more

graphic information and depth cues are extracted with the increasing of block size.

And the concatenation of multi-scale blocks features result in more improvement,

because it contains both global information and detailed information of depth cues,

which improve the final prediction. This conclusion is also shows in [6]. However,

Table. 4.1 also shows that the 55×55 sized blocks effects slightly on the concatena-

tion results, which means that over-detailed information is not necessary in depth

prediction. Therefore, in the following experiments in this section, we only use

3 sized blocks, which achieves a relatively good result and efficiency at the same

time.
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Table 4.1: Depth prediction results on the NYU V2 data set under different size of
single scale block setting and multi-scale setting.

block size Rel log10 Rms
55× 55 0.2819 0.1142 0.9791

121× 121 0.2371 0.0957 0.8339
271× 271 0.2026 0.0851 0.7714
407× 407 0.1994 0.0832 0.7652
4 blocks 0.1908 0.0789 0.7245

3 blocks(without 55× 55) 0.1909 0.0791 0.7244

4.2.2 Surface normals from depth map

In the above section, we shows how we predict depth of super-pixels by our deep

network. In this section, our goal is to refine the depth estimation from super-pixel

level to pixel level by enforcing surface normal constraints.

Virtual disparity

Disparity is generally defined in stereo vision problem, which characterizes the dis-

placement in image pixel between the left image and the right image. For monocular

depth estimation, we aim to estimate depth di for each pixel. To facility the for-

mulation and computation, we denote ri = 1
di

as a virtual disparity for that pixel.

Note that in stereo vision, disparity and depth are related as:

ri =
fB

di
, (4.3)

where f is the focal length of the camera and B is the distance between the camera

centers. In our experiments, these parameters are given by NYU2 Datasets.

From depth map to point cloud data

Under the perspective camera model, a 3D point pi = (xi, yi, zi)
T is projected to

an image point (2D point) (ui, vi) as:

λi

 ui

vi

1

 = K[R t]


xi

yi

zi

1

 , (4.4)
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where K is the intrinsic matrix while (R, t) is the extrinsic matrix. For the

NYU2 datasets, we have R = I and t = 0. Therefore, the intrinsic matrix

K = diag(f, f, 1) where f is the focal length. The imaging process can be simplified

as:

λi

 ui

vi

1

 =

 f 0 u0

0 f v0

0 0 1


 xi

yi

zi

 . (4.5)

where u0 and v0 are the position of centre point of the image.

Given the estimated depth di for the 3D point pi and intrinsic camera matrix

K, the 3D point is derived as:

pi =

 xi

yi

zi

 =


di(ui−u0)

f
di(vi−v0)

f

di

 . (4.6)

Under the spherical coordinate, ri =
√
x2i + y2i + z2i = di

√
( (ui−u0)

f
)2 + ( (vi−v0)

f
)2 + 1,

which is proportional to di.

Total least squares

In 3D space, a plane is defined by the equation:

nxx+ nyy + nzz − d = 0, (4.7)

where (x, y, z)T is the cloud of points lie on the plane, (nx, ny, nz) is the normal

of the plane and d is the scalar element. Given a subset of k 3D points pi of the

surface, least squares finds the optimal surface normal vector n = (nx, ny, nz)
T and

scalar d that minimizes:

e =
k∑

i=1

(pT
i n− d)2, subject to ‖n‖ = 1. (4.8)

The closed-form solution for n is given by finding the eigenvector corresponding to

the smallest eigenvalue of the sample covariance matrix M = 1
k

∑k
i=1(pi − p)(pi −

p)T with p = 1
k

∑k
i=1 pi. A problem is the closed-form solution for n involves eigen

value decomposition, which makes the optimization complex. We will solve this

problem in the following sections.
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Fast Approximate Least Squares

According to [61], by using the spherical coordinate, the cost function in Equa-

tion. 4.8 is evaluated as:

e =
k∑

i=1

(riv
T
i n− d)2, (4.9)

where ri is the spacial distance of image points and vi is the surface normal vector

of image points.

Dividing both sides of the equation with d2, we have

ẽ =
k∑

i=1

(riv
T
i ñ− 1)2 =

k∑
i=1

r2i (v
T
i ñ− r−1i )2, (4.10)

where ñ is the sought normal vector defined up to a scale. d is the signed distance

from the origin to the plane. Note that vi depends on the image coordinate only.

Since all points pi are in a small neighborhood, all ri =
√
x2i + y2i + z2i are simi-

lar. Dropping the r2i from the above equation leads us to the following approximate

formulation of the loss function:

ê =
k∑

i=1

(vT
i n̂− r−1i )2, (4.11)

whose solution for n̂ is given by:

n̂ = M̂−1b̂, (4.12)

with M̂ =
∑k

i=1 viv
T
i and b̂ =

∑k
i=1

vi
ri

. Set si = 1
di

, then

b̂ =
k∑

i=1

visi
1√

( (ui−u0)
f

)2 + ( (vi−v0)
f

)2 + 1
, (4.13)

In this formulation, the matrix M̂−1 is independent of the depths, and depends

only on the image coordinate, thus can be precomputed.

The surface normal is found by normalization, i.e. n = n̂
‖n̂‖ .

We further denote gi =
√

( (ui−u0)
f

)2 + ( (vi−v0)
f

)2 + 1, which is independent of the

depth map.

One way to deal with the inverse depth is to optimize over 1
ri

= 1
di

1
gi

. Due to the

relationship between depth and disparity, 1
ri

and 1
di

play similar role as disparity.

During the computation, n̂ = n
d

and n = dn̂, where d is the point-plane distance

between the camera center and the local 3D plane. In the iteration, we used d(it−1)
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, which means the value of d in the it− th iteration, instead.

Efficient computation

Surface normal is determined from a small region, where a 10 × 10 sized square

neighbour area of the current pixel is used in this thesis.

ri = digi, (4.14)

where gi can be pre-computed while di is the estimated depth from our deep net-

work.

4.2.3 Proposed surface normal constrained depth refine-

ment

Given a depth map, we could compute the surface normal using the method intro-

duced in above sections. Our energy function is similar with [6], which consists of

three terms, namely the data term, the smoothness term and the auto-regression

term at the pixel level. The smoothness term defined at the super-pixel level im-

proves the smoothness between adjacent super-pixels. For auto-regression potential

term, the key insight behind this term is that the depth channel and RGB channel

are locally correlated, thus we can characterize the local structure of the depth

map with the guidance of the corresponding colour image. The coefficients of the

auto-regression term are extracted from the corresponding colour image. However,

in our energy function we further refine the depth by using a data-driven surface

normal constraint. Here is our energy function:

E(d) =
∑
i∈S

φi(di) +
∑

(i,j)∈ES

φij(di, dj) +
∑
C∈P

φC(dC) +R(n(d)), (4.15)

where ES denotes the set of pairs of super-pixels that share same boundary,

S = s1, ...., sm is the set of super-pixels and P is the set of patches designed on the

pixel level. Now, we explain the potentials used in Eq. 4.15.

Potential 1: Data term ∑
i∈S

φi(di) = (di − di)2, (4.16)

where di is the depth prediction results from our deep network. This term is
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defined to measure the quadratic distance between the predicted depth di and the

regressed depth at super-pixel level.

Potential 2: Smoothness term∑
(i,j)∈ES

φij(di, dj) = w1(
di − dj
λij

)2, (4.17)

this super-pixel level smoothness term enhances coherence between adjacent

super-pixels.

Potential 3: Auto regression term∑
C∈P

φC(dC) = w2(du −
∑
r∈Cu

αurdr), (4.18)

where du is the predicted depth by the regression model, Cu is the neighbour

area of pixel u and λur is the model self-expressive coefficient for pixel r in the

neighbour area Cu. Similar with [6], we set λur ∝ e−
1
2
( gu−gr

σu
)2 and

∑
αur = 1, where

g represents the intensities value of corresponding pixels and σu is the variance of

the intensities in the local patch around u.

Potential 4: Surface normal constraint term

R(n(d)) = ω3

∑
i∈S

‖ni(d)‖TV, (4.19)

where the TV denotes the total variation. The first 3 potentials solve the problem

of smooth, however, they focus on local areas, which means a lack of global refine

of the depth map. Therefore, this surface normal constraint term is introduced to

refine the depth map from a global level.

We decouple the problem into two sub-problems by introducing an auxiliary

variable di = 1/si: enforcing disi = 1. Then, our energy function is:

E(d, s) =
∑
i∈S

φi(di) +
∑

(i,j)∈ES

φij(di, dj) +
∑
C∈P

φC(dC) +
1

2θ

n∑
i=1

(disi − 1)2 +
∑
i∈S

φn(ni(s)),

(4.20)

where θ is large at the beginning of the optimization process, which gives some

unconstraint space on the strict mathematical constraint disi = 1. Then, theta
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decrease with the increase of the number of iterations in optimization process,

which makes the mathematical constraint disi = 1 more strict. Therefore, this

potential add a global constraint on depth estimation process, which results in a

global optimization solution.

Update of d:

d = arg min
d

E1(d) =
∑
i∈S

φi(di) +
∑

(i,j)∈ES

φij(di, dj) +
∑
C∈P

φC(dC) +
1

2θ

n∑
i=1

(disi − 1)2,

(4.21)

Then, the update of d owns a closed-form solution. Because the S is constant

in this step of updating d, therefore, it is not appear in the variable position.

E(d) = ‖Hd− d‖22 + w1‖QHd‖22 + w2‖Ad‖22 +
1

2θ
‖Sd− 1‖22, (4.22)

where S = diag(s1, · · · , si, · · · , sn), d is the output of the regression model, H is the

indication matrix to select corresponding super-pixel, Q represents the neighbour-

ing relationship of super-pixels and A is the neighbouring matrix corresponding to

the regressive model in local patch.

As the energy function is quadratic with respect to d, a closed-form solution

can be derived algebraically:

dMAP = (H>H + w1H
>Q>QH + w2A

>A +
1

2θ
STS)−1(H>d +

1

2θ
ST1), (4.23)

Update of s:

s = arg min
s

E2(d, s) =
1

2θ

n∑
i=1

(disi − 1)2 +
∑
i∈S

φn(ni(s)), (4.24)

s = arg min
s

E2(d, s) =
1

2θ

n∑
i=1

(disi − 1)2 +
∑
i∈S

‖widin(S)‖TV , (4.25)

therefore,

E(s) =
1

2θ
‖Sd− 1‖22 +

∑
i∈S

‖
∑
j∈R

wijn̂ij‖TV , (4.26)



4.2 Method 41

Figure 4.2: An example of 3× 3 sized wij.

where R denotes the neighbour area of pixel i and since the smoothness term∑
i∈S ‖

∑
j∈Rwijn̂ij‖2 is dynamic, which means do not exit a closed-form, we cal-

culate the numerical gradient of this energy function. For the weights wij, we used

a filter same with edge detector, which enforce the smoothness of surface normal

within a small area. An example of implemented wij is shown in Fig. 4.2. Table. 4.3

and Fig. 4.3 show the relationship between the depth prediction results and the

size of wij. In this experiment, the step size for numerical gradient calculation is

0.001 and the step size for gradient change is 0.01. And the super-pixel level depth

gave out by framework in Sec. 4.2.1. It can be seen that the size 5 × 5 gives the

best result among all tested sizes, in the following experiments, we use 5× 5 sized

wij.

Table 4.2: Depth prediction results with different size of wij.

filter size 3× 3 5× 5 7× 7 9× 9 11× 11
Rel 0.1913 0.1909 0.1921 0.2007 0.2261

Then, the algorithm of our surface normal constrained depth refinement shows

below:

Require: Depth prediction di, i ∈ S, Surface normal prediction ni, i ∈ S,
super-pixel over-segmentation of the input image, camera intrinsic matrix K.
Initialize: θ0 and η.
while Not converged do

1). Update s iteratively;
2). Update d by using the closed-form solution;
3). Check the convergence conditions: ‖dk+1 − dk‖∞ ≤ ε1,∑

i=1 ‖disi − 1‖ ≤ ε2;
4). Update θ.

end while
Ensure: Depth map d and surface normal map r.
Algorithm 2: Surface normal constrained single image depth estimation.
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Figure 4.3: Depth prediction results with different size of wij.

4.3 Experiments

In this section, we report our experimental results on NYU V2 Kinect dataset, since

it is one of the most used dataset for indoor depth prediction. We compared our

method with all the state-of-the-art methods published recently. Some examples

of our result depth map shows in Fig. 4.4.

Error metrics Following error metrics are used in our report of errors for quan-

titative evaluation. These error metrics are widely used [12,60].

1. Mean relative error (Rel): 1
|T |

∑
d∈T |d̂− d|/d

2. Mean log10 error (log10):
1
|T |

∑
d∈T |log10d̂− log10d|

3. Root mean squared error (Rms):
√

1
|T |

∑
d∈T ‖d̂− d‖2

where d is the ground truth depth, d̂ is the predicted depth and T is the set of

all points in the images.

4.3.1 Database and experiment results

In our experiments, we used the NYU2 Kinect Dataset, which contains 1449 images,

where 795 images are used for training and 654 images are used for testing. In
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Image Our method Ground Truth

Figure 4.4: Examples of depth estimation from our framework.

Table. 4.3, we compared our method with state-of-art methods: depth transfer [59],

discrete-continuous depth estimation [62], pulling things out of perspective [58],

multi-scale deep network [60] and [6].

Table 4.3: Comparison of depth prediction errors with different methods.

Method Rel log10 Rms
Liu [62] 0.335 0.127 1.06

Eigen [63] 0.158 - -
Depth transfer [59] 0.374 0.127 1.12

Li [6] 0.223 0.0907 0.759
Eigen [60] 0.215 0.094 0.871

regression only 0.2133 0.0886 0.7725
Our method 0.1909 0.0791 0.7244

Analysis It can be seen from Table. 4.3 that the results obtained from our pro-

posed framework outperform most state-of-the-art algorithms except the framework

proposed by Eigen et al. [63].This framework achieves the best performance in this

experiment, however, it estimates depth by an end-to-end CNN structure, which

means its computational complexity is high. As for our proposed framework, the

part with the highest computational complexity is the three fully connected layers,
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Figure 4.5: Comparison between depth refine results with and without surface
normal constraint.

which contains much less trainable parameters compared with Eigen’s framework,

thus is more efficient.

4.3.2 Effect of surface normal constraints

Fig. 4.5 and Table. 4.4 shows the effects of surface normal constraint in the depth

refine process. As shown in Table. 4.4, the surface normal constraint almost has no

effect on the final depth estimation performance. However, as shown in Fig. 4.5,

the depth map we obtained by applying surface normal constraint in depth refine

process is more smooth than depth map without applying surface normal (obvi-

ous at the region with larger depth), which means the surface normal constraint

improves the visual quality of depth map.
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Table 4.4: Comparison between depth refine results with and without surface nor-
mal constraint.

Method Rel log10 Rms
Depth refine without surface normal constraint 0.1908 0.0791 0.7244

Depth refine with surface normal constraint 0.1909 0.0790 0.7243

Analysis Although the experiment results show that the surface normal term

almost has no improvement on depth estimation performance, the potential of

surface normal constraint is large, since the wij we implement have only smooth

effect on depth map. If wij is designed dynamically with the change of image patch,

which means the surface normal term conducts smoothness task on plane area and

conducts sharpness task when it encounters the area with two different plane, the

performance will be definitely improved.

4.3.3 Effect of depth label encoding

Table. 4.5 shows our depth coding method improved the results. Even using the

same pre-trained lower layers with [6], the improvement with using our depth coding

method is obviously.

Table 4.5: The improvement by using the depth coding to transfer the depth
prediction into a classification method.

Method Rel log10 Rms
VggNet with Depth Coding 0.1909 0.0791 0.7244

VggNet without Depth Coding 0.211 0.086 0.761
AlexNet with Depth Coding 0.2123 0.089 0.7754

AlexNet without Depth Coding [6] 0.232 0.094 0.821

4.4 Summary

In this chapter, we present a new framework for depth estimation from a single

image, which consists of depth prediction via a deep network and depth refining

via surface normal constraints. The result is very promising. However, in the

surface constraints part, we focus only on the smoothness of surface normals on

the plane without considering color and edge information. In the future, we plan

to add the color and edge information in the surface constraints parts.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we implement our proposed method of label encoding on both age

estimation from facial image and depth estimation from a single image tasks, af-

ter combining with some innovations of deep structure, the results show that our

proposed label encoding method successfully transfers the regression tasks to be

classification tasks and achieves a promising performance.

In Chapter 3, we have presented a new, hierarchical, aggregation-based deep

network to extract aging features from facial images. We employ region specif-

ic convolutional neural network (CNN) at lower layers. These low layer features

are hierarchically aggregated into consecutive higher layers. Our aging feature is

of dimensionality 110 and achieves both good discriminative ability and efficien-

cy. Experimental results of age prediction on the MORPH-II and the FG-NET

databases show that our method outperforms other state-of-the-art systems for

age detection.

In Chapter 4, we has presented a new framework for depth estimation from

a single image, which consists of depth prediction via a deep network and depth

refining via surface normal constraints. The result is very promising.

5.2 Future Work

In this section, we outline a number of future research directions that arise from

the work presented in this thesis.

Age estimation task: In this dissertation, the proposed framework worked

well on age estimation task and achieved state-of-art results. In the future, we

46
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want to extend it to be a multi-task framework, which is able to recognize the

race, gender and age at the same time. Moreover, these three pieces of information

could enhance each other during the training and testing process, which may lead

to better results.

Depth estimation task: In this dissertation, the proposed framework works

well on depth estimation from single image task and has promising performance.

However, even we transferred the regression task to a classification task, the VGG

features still could have unsatisfactory problem in the depth estimation task, since

it is trained for object recognition task on other databases. In the future, we have

an idea to refine the VGG net with NYU2 data and our encoding labels, which

could improve the performance of our framework. Another problem is that in the

surface constraints part, we focus only on the smoothness of surface normals on

the plane without considering color and edge information. In the future, we plan

to add the color and edge information in the surface constraints parts.

Label encoding method: In this dissertation, the proposed label encoding

method works well on both age estimation task and depth estimation task. How-

ever, the encoding labels usually distribute formally on breakpoints, which may

not suitable for uniformly distributed data. In the future, we plan try to encoding

labels according to the distribution of labels, this may achieve better performance.
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J. Schmidhuber, L. M. Gambardella et al., “Max-pooling convolutional neu-

ral networks for vision-based hand gesture recognition,” in Signal and Image

Processing Applications (ICSIPA), 2011 IEEE International Conference on.

IEEE, 2011, pp. 342–347.

[26] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature

pooling in visual recognition,” in Proceedings of the 27th International Con-

ference on Machine Learning (ICML-10), 2010, pp. 111–118.

[27] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified acti-

vations in convolutional network,” arXiv preprint arXiv:1505.00853, 2015.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Sur-

passing human-level performance on imagenet classification,” arXiv preprint

arXiv:1502.01852, 2015.

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[30] S. J. Nowlan and G. E. Hinton, “Simplifying neural networks by soft weight-

sharing,” Neural computation, vol. 4, no. 4, pp. 473–493, 1992.



References 51

[31] D. C. Ciresan, U. Meier, J. Masci, L. Maria Gambardella, and J. Schmid-

huber, “Flexible, high performance convolutional neural networks for image

classification,” in IJCAI Proceedings-International Joint Conference on Arti-

ficial Intelligence, vol. 22, no. 1, 2011, p. 1237.

[32] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked

denoising autoencoders: Learning useful representations in a deep network

with a local denoising criterion,” The Journal of Machine Learning Research,

vol. 11, pp. 3371–3408, 2010.

[33] J. Ba and B. Frey, “Adaptive dropout for training deep neural networks,” in

Advances in Neural Information Processing Systems, 2013, pp. 3084–3092.

[34] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng,

and C. Potts, “Recursive deep models for semantic compositionality over a

sentiment treebank,” in Proceedings of the conference on empirical methods in

natural language processing (EMNLP), vol. 1631. Citeseer, 2013, p. 1642.

[35] H. Han, C. Otto, X. Liu, and A. Jain, “Demographic estimation from face

images: Human vs. machine performance,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 37, no. 6, pp. 1148–1161, June 2015.

[36] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and

rotation invariant texture classification with local binary patterns,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7,

pp. 971–987, 2002.

[37] Z. Yang and H. Ai, “Demographic classification with local binary patterns,”

in Advances in Biometrics. Springer, 2007, pp. 464–473.

[38] F. Alnajar, C. Shan, T. Gevers, and J.-M. Geusebroek, “Learning-based en-

coding with soft assignment for age estimation under unconstrained imaging

conditions,” Image and Vision Computing, vol. 30, no. 12, pp. 946–953, 2012.

[39] J.-D. Txia and C.-L. Huang, “Age estimation using aam and local facial

features,” in International Conference on Intelligent Information Hiding and

Multimedia Signal Processing. IEEE, 2009, pp. 885–888.

[40] F. Gao and H. Ai, “Face age classification on consumer images with gabor

feature and fuzzy lda method,” in Advances in biometrics. Springer, 2009,

pp. 132–141.



References 52

[41] G. Guo, Y. Fu, C. R. Dyer, and T. S. Huang, “Image-based human age es-

timation by manifold learning and locally adjusted robust regression,” IEEE

Transactions on Image Processing, vol. 17, no. 7, pp. 1178–1188, 2008.

[42] X. Geng, Z.-H. Zhou, Y. Zhang, G. Li, and H. Dai, “Learning from facial aging

patterns for automatic age estimation,” in ACM international conference on

Multimedia. ACM, 2006, pp. 307–316.

[43] C. Zhang and G. Guo, “Age estimation with expression changes using multiple

aging subspaces,” in IEEE International Conference on Biometrics: Theory,

Applications and Systems (BTAS). IEEE, 2013, pp. 1–6.

[44] S. E. Choi, Y. J. Lee, S. J. Lee, K. R. Park, and J. Kim, “Age estimation

using a hierarchical classifier based on global and local facial features,” Pattern

Recognition, vol. 44, no. 6, pp. 1262–1281, 2011.

[45] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best

multi-stage architecture for object recognition?” in IEEE International Con-

ference on Computer Vision. IEEE, 2009, pp. 2146–2153.

[46] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical fea-

tures for scene labeling,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 35, no. 8, pp. 1915–1929, 2013.

[47] X. Wang, R. Guo, and C. Kambhamettu, “Deeply-learned feature for age

estimation,” in Applications of Computer Vision (WACV), 2015 IEEE Winter

Conference on. IEEE, 2015, pp. 534–541.

[48] Y. Sun, X. Wang, and X. Tang, “Deep convolutional network cascade for

facial point detection,” in IEEE Conference on Computer Vision and Pattern

Recognition. IEEE, 2013, pp. 3476–3483.

[49] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,

P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep networks,”

in Advances in Neural Information Processing Systems, 2012, pp. 1223–1231.

[50] T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and

D. Haussler, “Support vector machine classification and validation of can-

cer tissue samples using microarray expression data,” Bioinformatics, vol. 16,

no. 10, pp. 906–914, 2000.

[51] A. Liaw and M. Wiener, “Classification and regression by randomforest,” R

news, vol. 2, no. 3, pp. 18–22, 2002.



References 53

[52] K. Ricanek and T. Tesafaye, “Morph: A longitudinal image database of normal

adult age-progression,” in International Conference on Automatic Face and

Gesture Recognition. IEEE, 2006, pp. 341–345.

[53] N. C. Ebner, M. Riediger, and U. Lindenberger, “Facesa database of facial

expressions in young, middle-aged, and older women and men: Development

and validation,” Behavior research methods, vol. 42, no. 1, pp. 351–362, 2010.

[54] Z. Zhu, P. Luo, X. Wang, and X. Tang, “Deep learning identity-preserving

face space,” in IEEE International Conference on Computer Vision. IEEE,

2013, pp. 113–120.

[55] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgb-d mapping: Using

depth cameras for dense 3d modeling of indoor environments,” in In the 12th

International Symposium on Experimental Robotics (ISER. Citeseer, 2010.

[56] D. F. Fouhey, A. Gupta, and M. Hebert, “Data-driven 3D primitives for single

image understanding,” in Proc. IEEE Int. Conf. Comp. Vis., 2013.

[57] A. Saxena, J. Schulte, and A. Y. Ng, “Depth estimation using monocular and

stereo cues,” in Proc. IEEE Int. Joint Conf. Artificial Intell., vol. 7, 2007.

[58] L. Ladicky, J. Shi, and M. Pollefeys, “Pulling things out of perspective,” in

Proc. IEEE Conf. Comp. Vis. Patt. Recogn. IEEE, 2014, pp. 89–96.

[59] K. Karsch, C. Liu, and S. B. Kang, “Depth extraction from video using non-

parametric sampling,” in Proc. Eur. Conf. Comp. Vis. Springer, 2012, pp.

775–788.

[60] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a single

image using a multi-scale deep network,” in Proc. Adv. Neural Inf. Process.

Syst., 2014.

[61] C. Hane, L. Ladicky, and M. Pollefeys, “Direction matters: Depth estima-

tion with a surface normal classifier,” in Proc. IEEE Conf. Comp. Vis. Patt.

Recogn., June 2015, pp. 381–389.

[62] F. Liu, C. Shen, and G. Lin, “Deep convolutional neural fields for depth es-

timation from a single image,” Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,

2015.



References 54

[63] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic

labels with a common multi-scale convolutional architecture,” in Proc. IEEE

Int. Conf. Comp. Vis., 2015.


